x^(1/2)-3x^(1/3)=3x^(1/6)-9

Simple and best practice solution for x^(1/2)-3x^(1/3)=3x^(1/6)-9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^(1/2)-3x^(1/3)=3x^(1/6)-9 equation:


D( x )

x < 0

x < 0

x in <0:+oo)

x^(1/2)-(3*x^(1/3)) = 3*x^(1/6)-9 // - 3*x^(1/6)-9

x^(1/2)-(3*x^(1/3))-(3*x^(1/6))+9 = 0

x^(1/2)-3*x^(1/3)-3*x^(1/6)+9 = 0

t_1 = x^(1/6)

1*t_1^3-3*t_1^2-3*t_1^1+9 = 0

t_1^3-3*t_1^2-3*t_1+9 = 0

{ 1, -1, 3, -3, 9, -9 }

1

t_1 = 1

t_1^3-3*t_1^2-3*t_1+9 = 4

1

-1

t_1 = -1

t_1^3-3*t_1^2-3*t_1+9 = 8

-1

3

t_1 = 3

t_1^3-3*t_1^2-3*t_1+9 = 0

3

t_1-3

t_1^2-3

t_1^3-3*t_1^2-3*t_1+9

t_1-3

3*t_1^2-t_1^3

9-3*t_1

3*t_1-9

0

t_1^2-3 = 0

DELTA = 0^2-(-3*1*4)

DELTA = 12

DELTA > 0

t_1 = (12^(1/2)+0)/(1*2) or t_1 = (0-12^(1/2))/(1*2)

t_1 = 3^(1/2) or t_1 = -3^(1/2)

t_1 in { -3^(1/2), 3^(1/2), 3}

t_1 = -3^(1/2)

x^(1/6)+3^(1/2) = 0

1*x^(1/6) = -3^(1/2) // : 1

x^(1/6) = -3^(1/2)

( -3^(1/2) < 0 i 1/6 in (0:1) ) => x naleu017Cy do O

t_1 = 3^(1/2)

x^(1/6)-3^(1/2) = 0

1*x^(1/6) = 3^(1/2) // : 1

x^(1/6) = 3^(1/2)

x^(1/6) = 3^(1/2) // ^ 6

x = 27

t_1 = 3

x^(1/6)-3 = 0

1*x^(1/6) = 3 // : 1

x^(1/6) = 3

x^(1/6) = 3 // ^ 6

x = 729

x in { 27, 729 }

See similar equations:

| -0.8x+6.32=-0.4x+3.92 | | (17b-5)-4(4b+1)=-7 | | -3(8p+3)-2(1-23p)=3(5+7p) | | (x+3)(5/9)=40 | | 7z-10-2z+5=0 | | 5m-3n(4m-2n)= | | 7z-4=9z-3z | | 2+8y=12 | | 7x+2x=8x+5 | | 9(x)=3x-9 | | 2Ln(x)-Ln(2x-9)=Ln(7x)-Ln(x-2) | | =(-4)-(-9) | | 2(2x+3)-7x=18+5(x+2) | | (12y-18/6)=4y+3 | | 4/5-x=495 | | -8+2(-8)= | | (1/3)z+(5/6)=(-2/3)z+2/3 | | -7(6+x)=49 | | 10x=15+19x | | 7x+9=11x-31 | | 16x+12=8x+40 | | E^2-3=18 | | 5r-10r=30 | | 8m-12=76 | | x^1/3-3x^1/2=3x^1/2-9 | | (1/8)x=(9/10) | | 52=.5(6+7) | | x^2+12x+33=-6 | | -8x/9+5x/9 | | 2x-x-2x=12 | | a/3+6=a/2+7 | | 4x+27=3x+29 |

Equations solver categories